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Abstract

Metallography, analytical scanning electron
microscopy, and X-ray diffraction were employed
to measure the kinetics and characterize the
microstructure of hot corrosion of a Ni-Cr-Fe alloy,
INCONEL 600e, after 500h of immersion in molten
Na,CO,-NaCl salt at 900-950°C in an oxidizing
atmosphere. This was done to help assess the
alloy as a reaction-vessel material for a waste
treatment process known as Molten Salt
Oxidation.

The alloy was found to hot corrode by surface
oxidation and intergranular attack, IGA. Their
combined rate for the loss of load-bearing cross-
section metal was comparable to corrosion rates
reported by others for an array of analogous salts.
About 5% of the oxide scale was a contiguous,
dense, protective layer of Cr,0; at the metal/oxide
interface. A middle portion comprised about 55%
of the scale and was a porous, mixed oxide of NiO
> Cr,04 > Fe,05. The outer 40% was nearly all
NiO with dense grains and cavitated grain bound-
aries. Overall, the NiO was dominant and the
lesser amounts of Cr,0, and Fe,O, were roughly
equivalent. No direct invasion of salt through the
oxide to the metal was observed

Introduction

Molten Salt Oxidation (MSO) is a waste
destruction process currently under development
to treat wastes that could be treated by incinera-
tion. In MSO, the organic portion of the waste is
destroyed by catalytic reaction in a liquid carbon-
ate-base salt bath at about 900-950°C . The bath
is lanced with 20% excess air to maintain a highly
oxidizing environment. This converts the C and H
components of the organic wastes (oil, solvents,

sNominal composition: 74Ni (+Co)-16Cr-8Fe-2 other
(wt%). UNS designation is NO6600. INCONEL is a
trademark of the Inco family of companies.

plastic, cloth, rubber, paper, etc.) to CO, and H,0,
respectively. Inorganic residues, including
radioactive materials, are trapped in the molten
salt and ultimately removed and processed into a
final, nonleachable ceramic. The reaction vessel
for this process must be made of metal in order to
transfer heat from the exothermic chemical reac-
tions and the process is corrosive to metal.

Considerable literature exists on the corrosion
of materials in moiten salts*2 Corrosion studies
and reviews in molten carbonate melts have been
reported as part of studies on heat transfer and
energy storage media,>scoal gasification,”» and
molten carbonate fuel cellss. In general, the corro-
sion rate has been shown to depend on sait com-
position with carbonate melts generally being less
corrosive than hydroxide melts.1o Temperature
and the oxidizing level of the gas environment are
also important factors affecting the corrosion rate.
Small amounts of certain elements in the salt,
such as sulfur or chlorine, may increase the corro-
sion rate. INCONEL 600 and Incoloy 800 were
cited as preferred alloys for use in moiten carbon-
ates by Kohi et al.s In unpublished work, the pre-
sent authors selected INCONEL 600 over Incoloy
800 and other likely alloys by corrosion-test
screening. An Arrhenius plot by Kohl et al of
INCONEL 600 corrosion rates in various molten
alkali metal carbonate salts was replotted and is
given in Fig. 1, which also contains a preview of
the results obtained in this work.

The salts employed by others in Fig. 1 included
Na, K, and Li (alone or combined), chloride, and
hydroxide. The cover gases varied considerably
and included argon, air, air-CO, mixtures, and
CO,. Unfortunately, none of the test conditions
(temperature, salt, and gas) were sufficiently close
to those employed in MSO to be of significant
value. Also, the wide scatter of the data raised
strong doubts about interpreting it. The next
step—and the purpose of this work—was to deter-
mine the effect of temperature on hot cormrosion of
INCONEL 600 under MSO conditions and to char-
acterize the resuiting microstructures.
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Fig. 1 —Rate of hot corrosion of INCONEL 600 in molten alkali metal carbonate salts.

Experimental Procedure

INCONEL 600 was corrosion tested for 500h
at five temperatures between 900 and 950°C
(900, 908, 929, 941, and 950°C) under prototypi-
cal MSO conditions in the salt fumace system
shown in Fig 2. The sample resting on the bottom
of the 2.5™-ID alumina tube represents a 6” X 1" X
1/8” bar of mill-annealed plate with a bright, 120~
grit finish. Thickness was measured before test-
ing to the nearest 0.0001” along every 1/4” of the
bar length. A hole near the top of the bar allowed
wire hooking for loading and unloading. The

molten salt was Na,CO5 — 20 mol% NaCl,
blended from reagent-grade NaCl and ACS-grade
Na,CO,. The sparge gas of 8.6% CO,, 10.2%0,
and 81.2%N, exited a Matheson Type 602
rotameter at 200cc/min. and became saturated by
bubbling through water held at 109°F by an oil
bath tank (Blue M “Magni Whirf"). The gas at this
point represented the MSO process and is
referred to further here as “MSO-type gas”. The
gas proceeded along tape-heated lines to the fur-
nace where it bubbled through the melt , then
exited the system through glycerin in a bubble jar
at 1-2 bubbles/s. Type K thermocouples were
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Fig. 2 — Schematic view of the salt furnace system.

employed in the computerized fumace controlier
and thermal data was accessed through a sepa-
rate computer
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to determ me the relatlve extent of attack alonq
their fengths. It was found that corrosion was
rather uniform along the salt-submerged portion of
the bar but was slightly greater, or as deep as any-
where else, about 1” below the salt line.
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analysis by X-ray diffraction (XRD) and analytical

SEM analysis. The 800°C sampile was selected

because more of its surface oxide had survived

spalling. The XRD was done on 3 Phillips XPERT

diffractometer with Cu K at 40KV, The samnle
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was lcaded intact with its oxide facing the beam.
This yielded pattems from the entire oxide thick-
ness and part of the underlying metal. JCPDS
files were employed for phase identification. The
analytlcal SEM analysis was done with a JEOL
i 840 Scanning Eiectron Microscope
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Northern model TN-5500 energy

All microaranhs were nrocessed electro-onti-

icrographs were processed electro-opti
cally by scanning at 300 lines/in., adjusting with
Adobe Photoshop®, and printing at 600 dpi.



The modes of hot cormosion attack observed
here between 900° and 950°C were oxidation and
IGA, as shown in Fig. 3. All five samples exhibited

analogous microstructuras, the only notable diffar-
ences being the thickness and spalling of the oxide,
and the depth of IGA. The microstructural features
in Fig. 3 required to measure the extent of corrosion

altack are depicted schematically in Fig. 4.

Fig, 3 — Oxidation {O)

salt with

s K
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supporting cross-section metal from hot comrosion is

the sum of the metal thickness consumed by oxida-
tion plus the depth of the IGA penetration.’ The
extent of IGA is defined here as the amount remain-
ing in the survived metal and not the total amount
that 1 from the gutset. It is measured
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to account for onlv one surface beinq corroded
This method is described in the standard, ASTM
G54-77.12 Making these measurements on the
samples (the 900°C sample was omitted because
its starting thickness was not certain), and convert-
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the hot corrosion rates in Fig. 5.

It was observed here that gravimetry and electrochem-
istry measurements were sometimes extended emo-
neously in studies such as this. To understand this, note
that only the unaffectad metal depicted in Fig. 4 is capa-
ble of fuIIy supporting design loads. This critical dimen-
sion is revealed by metallography but not by gravirnetry
or electrochemistry measurements, even though resulls
from these [atter two methods are often interpreted erro-
neously as total measures of corrosion. For examples,
gravimetry is completely confounded by oxidation weight
gain and spalling, and intema! attack cannot be guantified
by either gravimetry or electrochemical measurements.
Certainly, these two methods do serve invaluable roles in
characterizing certain aspects of hot corrosion, but these

roles do not apply here.
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of temnerature Their total (shown eaflier in Fig. 1)
displays Arrhenius behavior. As seen from Fig. 1,
the hot corrosion rates obtained here are consis-
tent with and encompassed by those obtained
from a wide variety of roughly comparable corro-
sion variabies.

C , and Fp,.O . The distribution of
ox:des is revealed in Figs. 6 — 8, which contain
SEM images in the SE (secondary electron) and
BSE {back-scaftered electron) modes, as well as
EDX elemental maps and EDX point analyses.
SE lmaglng is employed to yield detail and resoru-
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6, the common area of the SEM images is seen in
the lower row as reduced- maanflcatron elemental
maps obtained by EDX. Note the intense Cr at
the metaifoxide interface and the corresponding
lack of Ni and Fe. This corresponds to the Cry04

layer indicated in !'Ig ID) and is confirmed Dy
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and dense, indicative of a protective layer

pies about 5% of the total oxide thlckness
Local chemical analysis of points D and C in

Fig. 8 show a transition away from the Cr,O;, layer

into increasing amounts of NiO and Fe,0,, mostly
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Fig. 5 — Hot corrosion rates for INCONEL 600 at 900° — 950°C in Na,(Oj4 ~ 20 mol% NaCl molten salt with
MSO-type gas.

Fig. 6 - S5EM/EDX analysis of the metal and oxide of INCONEL 600 after 900°C /500 h int molten salt.
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and have cavitated grain boundaries. This outer Temperature Molten Salt Containment,” Rockwell
portion accounts for about 40% of the oxide scale. International/RD86-295, Canoga Park, CA, Jan.
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Corrosion Testing,” Atomics International, San
Conclusions Diego, CA, #N423MAR420-001, Feb. 1976.
sRockwell International, Canoga Park, CA,
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combined Arrhenius rates are consistent with sM-L. Saboungi, H. Kojima, ed., Proceedings of
those obtained by others under roughly compara- the int. Symp. on Molten Salt Chemistry and
bie conditions. Technology, 93-9, p. 321, 436, The
The oxide scale exhibited three regions. Electrochemical Society, Inc., (1993).
Covering the metal was a contiguous, dense, pro- © G.Y. Lai, reference 2, p. 180
tective layer of Cr,0,. The midsection was a nJ. H. Jackson and M. H. LaChance, as cited in
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No direct invasion of salt through the oxide to
the metal was observed.
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c) EDX of point A
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